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Species distribution models should provide conservation practioners with estimates of
the spatial distributions of species requiring attention. These species are often rare and
have limited known occurrences, posing challenges for creating accurate species
distribution models. We tested four modeling methods (Bioclim, Domain, GARP,
and Maxent) across 18 species with different levels of ecological specialization using six
different sample size treatments and three different evaluation measures. Our
assessment revealed that Maxent was the most capable of the four modeling
methods in producing useful results with sample sizes as small as 5, 10 and 25
occurrences. The other methods compensated reasonably well (Domain and GARP) to
poorly (Bioclim) when presented with datasets of small sample sizes. We show that
multiple evaluation measures are necessary to determine accuracy of models produced
with presence-only data. Further, we found that accuracy of models is greater for
species with small geographic ranges and limited environmental tolerance, ecological
characteristics of many rare species. Our results indicate that reasonable models can be
made for some rare species, a result that should encourage conservationists to add
distribution modeling to their toolbox.
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Effective conservation plans require accurate estimates

of the spatial distributions of the species they are trying

to protect. With such information conservationists can

predict how a species’ distribution will respond to

landscape alteration and environmental (climate)

change. Species distribution modeling can provide a

measure of a species’ occupancy potential in areas not

covered by biological surveys and consequently is

becoming an indispensable tool to conservation plan-

ning (Guisan and Zimmermann 2000, Corsi et al. 2000,

Elith and Burgman 2003, Loiselle et al. 2003). These

models combine points of known occurrence with

spatially continuous environmental layers to infer eco-

logical requirements of a species, generally using a

statistical algorithm. The geographic distribution of a

species is then predicted by mapping the area where these

environmental requirements are met (Elith et al. 2006).

Depending on data quality and the application at hand,

these models can assist in identifying previously un-

known populations, determining sites of high candidacy

for reintroductions, guiding additional surveys, and

informing selection and management of protected areas

(Graham et al. 2004).

Of particular interest to conservation biologists are

rare species. By definition, rare species have sparse and/

or restricted spatial distribution patterns (Rabinowitz

et al. 1986, Kattan 1992, Gaston 1997), which often

means they are habitat specialists and that there is a
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limited number of sites of known occurrence. Species

ecological characteristics (i.e. range sizes and ecological

specialization) have been shown to influence model

performance (Segurado and Araujo 2004, Brotons

et al. 2004, McPherson et al. 2004, Elith et al. 2006).

Generally, models for species with broad geographic

ranges and environmental tolerances tend to be less

accurate than those for species with smaller geogra-

phic ranges and limited environmental tolerance (Manel

et al. 2001, Boone and Krohn 2002, Kadmon et al.

2003, Thuiller et al. 2004, Luoto et al. 2005, Elith et al.

2006).

Small sample sizes pose challenges to any statistical

analyses and result in decreased predictive potential

when compared to models developed with more occur-

rences (Stockwell and Peterson 2002, McPherson et al.

2004). As sample size increases, accuracy should also

increase until achieving its maximum accuracy potential

thereby reaching an asymptote. The maximum accuracy

potential and the sample size at which the asymptote is

reached will depend on the study area and species, the

quality and spatial resolution of the environmental and

species occurrence data used to develop the model, and

the modeling method itself. While many previous

researchers have investigated the effect of sample size

on model accuracy, most have not explicitly manipulated

sample size by species (Segurado and Araujo 2004,

Brotons et al. 2004), making it difficult to evaluate the

effects of species ecological characteristics versus sample

size on model accuracy. For instance, if a species has a

limited range it is likely that proportionally more of its

environmental space is sampled with fewer points, than a

species with a large range. Two studies, Stockwell and

Peterson (2002) and McPherson et al. (2004) manipu-

lated sample size and determined that models built with

fewer points were generally less accurate, however the

latter used sample sizes (50, 100, 300, and 500) much

larger than those typically available for species of

conservation concern. To further explore the variation

among sample size and model performance, we gener-

ated models for 18 California taxa with varying degrees

of habitat specialization using four modeling methods

and a variety of sample sizes characteristic of rare species

(n�/5, 10, 25, 50, 75, or 100).

The potential for a predictive species’ distribution

model to aid conservation planning will depend on the

model’s ability to accurately depict the species’ occu-

pancy potential in the geographic region in question.

Evaluating these models with presence/absence data is

challenging (Fielding and Bell 1997, Pearce and Ferrier

2000, Manel et al. 2001, Elith and Burgman 2003). This

task is further complicated when only presence occur-

rence data are available because it is very difficult to

evaluate false-positive prediction (commission) errors.

Given this limitation, many modelers opt to evaluate

only omission errors and ignore commission errors. This

is insufficient because a model that has no omission

errors can also have high commission errors because as

omission errors decrease, commission errors tend to

increase and vice versa (Fielding and Bell 1997).

Evaluating a model for omission alone will fail to

identify models that balance commission and omission

errors (or weights one slightly above the other depending

on which is considered by the modeler to be a more

serious problem) and therefore fail to identify models

with the highest predictive ability. Given these complex-

ities, research on model evaluation for presence-only

modeling is vital. Here we take a multifaceted approach

using three different evaluation approaches that vary in

how they measure omission and commission errors. To

evaluate overall model fit we use 1) receiver operating

curves (ROC), which are threshold independent and

include both omission and commission error. 2) We use

predictive success to measure omission error while 3) the

spatial comparison of predictions by models generated

with the full species occurrence data to those of models

generated with fewer observations provides an assess-

ment of both commission error and model stability. This

final measure is essential for evaluating which modeling

method performs well with incomplete species occur-

rence data sets, a common condition when modeling rare

species distributions.

Numerous species distribution modeling methods

exist, each unique with regard to their data require-

ments, statistical methods and overall ease of use

(Guisan and Zimmermann 2000, Elith and Burgman

2003, Elith et al. 2006). These different modeling

methods can produce clearly different geographic pre-

dictions and therefore resultant conservation strategies,

even when using the same data (Loiselle et al. 2003). We

chose four modeling methods potentially useful to

conservation planning, Bioclim (Nix 1986), Domain

(Carpenter et al. 1993), GARP (Stockwell and Peters

1999), and Maxent (Phillips et al. 2004, 2006). These

methods were chosen because they are easy to use,

batchable, produced useful predictions in other research

(Lindenmayer et al. 1991, Gillison 1997, Anderson and

Martı́nez-Meyer 2004, Phillips et al. 2004), and do not

require an explicit quantification of absence to formu-

late a predicted distribution model. Further, they varied

in predictive performance in a recent comprehensive

model study (Elith et al. 2006) in which Bioclim

performed relatively poorly, Domain and GARP had

intermediate performance, and Maxent performed

very well.

In sum, we test models that use presence occurrence

data, which is of great utility because the vast majority of

biotic data available to modelers are presence-only. We

manipulate sample sizes to include those very small

samples typical of rare species and quantify ecological

characteristics of species to evaluate the relative influ-

ence of both species ecology and sample size on model
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performance. Further, we use a suite of evaluation

procedures that complement each other to obtain as

complete a picture as possible of the predictive ability of

each model. Our comprehensive analyses should stimu-

late continued use of distributional modeling in con-

servation management, particularly when only limited

occurrence data are available.

Materials and methods

Species occurrence data

Species occurrence data were extracted from the

‘RareFind’ dataset of the California Natural Diversity

Database (CNDDB). CNDDB maintains information

about the natural history and locations of rare,

threatened, endangered, and special status species and

natural communities of California. Eighteen terrestrial

taxa (Table 1) were selected from CNDDB that have

habitat requirements that lend themselves to climatic

modeling (i.e. are not restricted to a geological forma-

tion or micro-habitat that is unlikely to be detected

using climatic information) and had at least 150

recorded occurrences with an estimated mapping preci-

sion of no larger than 1 km. To eliminate a potential

bias of clustered occurrences, the datasets were filtered

so that there was only one record per 1 km2 cell for

each species. We selected species from a variety of

taxonomic groups that had much of their range within

California. Two of these are easily identified subspecies

of widespread species. We qualitatively compared oc-

currence data with known distributional ranges for each

species to ensure that the known occurrences repre-

sented each species’ entire geographic range within

California.

Environmental data

We compiled climate and topographic geographic in-

formation systems (GIS) layers covering the geographic

extent of California. The original data were at a

resolution of 1 km or finer, and the fine scale data

were resampled to the coarser 1 km resolution. We

obtained climatic layers from Daymet, an eighteen year

daily surface weather database (B/www.daymet.org�/).

The Daymet monthly layers were further summarized

into 36 biologically relevant climatic variables following

Nix (1986). We derived slope from a digital elevation

model (DEM) of 30 m resolution for California,

acquired from the USGS national elevation dataset.

We eliminated correlated environmental variables using

a Pearson correlation test to obtain the 10 variables used

as predictors in our models (Table 2; Johnson et al.

2002).

Modeling methods

We randomly selected 150 occurrences from the

CNDDB dataset for each of the 18 study species so

that we had the same base number of occurrences for

each species. We partitioned the data from each species

into training (occurrences used to develop the prediction

models) and evaluation datasets. Training datasets with

sample sizes of 5, 10, 25, 50, 75, or 100 were generated by

randomly selecting the required number of observations

from each taxon’s full 150 occurrence dataset. Then we

used 50 randomly selected records from those remaining

to create the evaluation dataset. We repeated the process

for each sample size category and taxon to obtain 10

replicates of each species.

Predictive distribution models were formulated using

the four different modeling techniques, entering the

Table 1. Californian taxa modeled.

Class Taxa Common name

Insect Danaus plexippus Monarch butterfly
Amphibian Ambystoma californiense California tiger salamander
Amphibian Scaphiopus hammondii Western spadefoot
Amphibian Rana aurora Red-legged frog
Amphibian Rana boylii Foothill yellow-legged frog
Amphibian Rana muscosa Mountain yellow-legged frog
Reptile Clemmys marmorata Western pond turtle
Reptile Phrynosoma coronatum Coast horned lizard
Reptile Cnemidophorus hyperythrus Orange-throated whiptail
Bird Accipiter gentilis Northern goshawk
Bird Buteo swainsoni Swainson’s hawk
Bird Grus canadensis tabida Greater sandhill crane
Bird Athene cunicularia Burrowing owl
Bird Strix occidentalis caurina Northern spotted owl
Bird Polioptila californica California gnatcatcher
Bird Agelaius tricolor Tricolored blackbird
Mammal Spermophilus mohavensis Mohave ground squirrel
Mammal Arborimus pomo Red tree vole
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occurrence datasets as the dependent variable and the

selected environmental variables as the predictors.

Hence, for each species we generated 244 models

(10 models for each modeling method for each of the

six sample sizes and one model for each modeling

method with the full dataset of 150 occurrences). The

modeling methods are briefly described below.

1) Bioclim: this ‘‘boxcar’’ environmental envelope

algorithm identifies locations that have environmental

values that fall within the range of values measured from

the occurrence dataset (Nix 1986, Busby 1991). The area,

often termed the ‘‘core bioclimate’’, represents the 5�95

percentile limits and is calculated by disregarding 5% of

the lower and higher values of each climatic index

thereby attempting to reduce the impact of outliers

(Carpenter et al. 1993, Farber and Kadmon 2003). For

the purposes of this study and to facilitate analysis as

well as comparison to other models, the output of the

standard Bioclim algorithm was altered to obtain ten

prediction classes (minimum�maximum range, within

2.5�97.5; 5�95; 7.5�92.5; 10�90; 15�85; 20�80; 25�75;

30�70; and 35�65 percentile limits).

2) Domain: this method derives a point-to-point

similarity metric to assign a classification value to a

potential site based on its proximity in environmental

space to the most similar occurrence. The Gower metric,

which is the sum of the standardized distance between

two points for each predictor variable, is used to

quantify the similarity between two sites. The standardi-

zation is achieved using the predictor variable range at

the presence sites to equalize the contribution from each

predictor variable. Similarity is then calculated by

subtracting the distance from 1. The maximum similarity

between a candidate point and the set of known

occurrences is assigned to each grid cell within the study

area; these similarity values are degrees of classification

confidence (Carpenter et al. 1993).

3) Genetic algorithm for rule-set prediction (GARP):

the desktop version (B/http://beta.lifemapper.org/desk

topgarp�/) of this artificial intelligence-based approach

employs four distinct modeling methods: atomic, logistic

regression, bioclimatic envelope, and negated bioclimatic

envelope rules to derive several different rules (Stockwell

and Peters 1999). GARP uses these rules to iteratively

search for non-random correlations between the pre-

sence and background absence observations and the

environmental predictors. GARP prepares the occur-

rence data by resampling the occurrence points in

environmental space into 1250 presence and 1250 non-

presence pixels randomly selected from the background.

A GARP run begins by using 50% of these occurrence

observations to train the model and then tests the

resulting model with the remaining observations. It

then resamples the observation points again, dividing

the dataset into new training and test datasets and

attempts to improve on the first model created. This

process is repeated iteratively generating a set of ‘‘rules’’

that are altered in a genetic fashion until the best

possible model is achieved or a set number of iterations

are performed. The output for a GARP run is a binary

map of predicted presence and absence. Since GARP’s

output is stochastic and can often produce different

models for the same set of observations (Anderson et al.

2003) we ran GARP 500 times for each occurrence

dataset. Using the ‘‘best subsets’’ feature, the 10 best

models were selected based on internal GARP evalua-

tion measures of omission and commission error rates.

These models were merged to produce a final predicted

distribution map having values between 0 and 10, 10

being cells that all 10 models predicted present.

4) Maximum entropy (Maxent): Maxent utilizes a

statistical mechanics approach called maximum entropy

to make predictions from incomplete information.

Maxent estimates the most uniform distribution (maxi-

mum entropy) across the study area given the constraint

that the expected value of each environmental predictor

variable under this estimated distribution matches its

empirical average (average values for the set occurrence

data) (Phillips et al. 2004, 2006). Continuous envi-

ronmental data can also be used to define quadratic

features and product features (for this study only

quadratic terms were considered), thereby adding further

constraints to the estimated probability distribution by

restricting the variance of each environmental predictor

and covariance of each pair of environmental predictors

to match the variance and covariance on the occurrence

dataset.

Similar to logistic regression, Maxent weights each fea-

ture (environmental variable or its square, in this study)

by a constant. The estimated probability distribution is

exponential in the sum of the weighed features, divided

by a scaling constant to ensure that the probability

values range from 0�1 and sum to 1. The program starts

with a uniform probability distribution and iteratively

alters one weight at a time to maximize the likelihood of

the occurrence dataset. The algorithm is guaranteed to

converge to the optimum probability distribution and

because the algorithm does not use randomness, the

outputs are deterministic.

Table 2. Environmental predictor variables used in each model.

Variable

Annual temperature range
Isothermality (mean diurnal range/temperature annual range)
Annual mean precipitation
Precipitation of the warmest quarter
Coefficient of variation of monthly precipitation
Annual total radiation
Annual radiation range
Coefficient of variation of monthly relative humidity
Elevation
Slope
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Given that the traditional implementation of maxi-

mum entropy is prone to over fitting, Maxent employs a

relaxation. It constrains the estimated distribution so

that the average value for a given predictor is close to the

empirical average (within empirical error bounds) rather

than equal to it. This smoothing procedure is called

regularization and the user has the option to alter the

parameters of this procedure to potentially compensate

for small sample sizes. In this study we maintained a

constant regularization parameter throughout.

Maxent’s predictions for each analysis cell are ‘‘cumu-

lative values’’, representing as a percentage, the prob-

ability value for the current analysis cell and all other

cells with equal or lower probability values. The cell with

a value of 100 is the most suitable, while cells close to 0

are the least suitable within the study area (Phillips et al.

2004).

Model evaluation

The models developed using the occurrence datasets of

various sample sizes were queried spatially to determine

their predictions at the 50 locations of the occurrences

set aside for evaluation. The results were processed using

the following three evaluation methods.

We selected the receiver operating characteristic

(ROC) plot as one method to evaluate the predictive

ability of the generated distribution models. A ROC plot

is created by plotting the sensitivity values, the true-

positive fraction against 1�specificity, the false-positive

fraction for all available probability thresholds (Fielding

and Bell 1997, Manel et al. 2001). A curve that

maximizes sensitivity for low values of the false-positive

fraction is considered a good model and is quantified by

calculating the area under the curve (AUC). The AUC

can be used as a measure of the model’s overall

performance and has values usually ranging from 0.5

(random) to 1.0 (perfect discrimination) but can have

values below this range indicating a model that is worse

than random (Engler et al. 2004). The ROC plot method

has an advantage over confusion matrix-derived evalua-

tion methods (for examples see below and Fielding and

Bell 1997) because it does not require an arbitrary

selection of a threshold above which prediction is

considered positive, a procedure that can bias evalua-

tions (Fielding and Bell 1997). While generally used

when presence and absence data are available, ROC plots

can also be generated with presence and background

absence data (Phillips et al. 2006). To implement the

ROC evaluation procedure in this study we randomly

generated 50 background observations within the

California boundary and entered them into the ROC

curve procedure in place of absences to accompany the

50 presence observations. The AUC derived from the

ROC plot of this study can be interpreted as a measure

of the ability of the algorithm to discriminate between a

suitable environmental condition and a random analysis

pixel (background), rather than between suitable and

unsuitable conditions, as an AUC developed with

measured absences is interpreted (Phillips et al. 2006).

The ROC curves were plotted and the AUC value

calculated in SPSS (Anon. 2001).

Given that only presence occurrences are available, it

is useful to use an evaluation method that does not

require absence occurrences. We selected prediction

success, which is the percentage of positive evaluation

occurrences correctly classified as positive. This evalua-

tion method requires a threshold to convert continuous

model predictions to dichotomous classifications of

presence/absence. A threshold should not be chosen

arbitrarily but selected based on the objectives for

generating the species distribution model (Wilson et al.

2005). As larger thresholds are selected, commission

errors tend to decrease while omission errors will

increase (Fielding and Bell 1997). If commission errors

are considered to be more serious, then a larger thresh-

old should be selected thereby minimizing this error at

the expense of greater omission errors. When there is no

inclination as to which type of error is most critical, then

a threshold, or ‘‘cut-off’’ for each model can be obtained

by identifying the point on the ROC curve where the

sum of the sensitivity and specificity is maximized

(Manel et al. 2001). This value was determined for the

100 sample size dataset models and averaged over the 10

replicate models to obtain the threshold for each taxon

and modeling method. While this is a reasonable

strategy it may put some modeling methods at a

disadvantage. Models generated with small sample sizes

could potentially be evaluated as poor models by the

threshold dependent measures if the thresholds selected

for the 100 sample models are inappropriate for models

generated with fewer occurrences. We acknowledge this

possible limitation, however selecting an appropriate

threshold for models generated with small sample sizes is

difficult using standard techniques because of the lack of

power in the presence data (prevalence, Manel et al.

2001). Hence, we used the thresholds based on largest

sample size (100) category models to reclassify each

taxon’s models generated with the various sample sizes

to binary maps of predicted presence and absence.

Predictive success was the percentage of the 50 evalua-

tion points that were correctly classified by a given

model/sample size combination. Prediction success gives

an estimate of the number of true-positive predictions

(measure of the omission error rate) but it does not give

an estimate the other type of error, commission, i.e. the

false-positive predictions. In an attempt to identify the

magnitude of commission errors, the total spatial area

predicted present was recorded. The area predicted

present can be used as a surrogate for commission

errors, assuming that models with larger prediction
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areas are also more likely to have higher rates of

commission errors.

As a final evaluation measure, the binary prediction

maps were spatially compared to the full 150-occurrence

dataset model for the same taxa and modeling method.

Here we assume that the models based on the complete

dataset (150 localities) are the most representative of the

true distribution of the species given the limitations of

the modeling method, and the species occurrence and

environmental data available. The full 150-occurrence

dataset models were reclassified into binary prediction

maps using the same thresholds used to convert the

sample size category model replicates for the prediction

success evaluation. We then determined the spatial

overlap between each of the 60 models (i.e. 10 per each

of the six sample size categories) per species and the

model created with all 150 occurrences for a given

modeling method. A confusion matrix (Fig. 1) was

populated for each model with the spatial area where

the model was in accordance or discordance with its full

150-sample size model for the two possible classifica-

tions of state of occurrence. We used kappa (Fielding

and Bell 1997) to summarize the overall agreement

between the spatial predictions of each replicate to its

full 150-sample size model. A value of one would

indicate a perfect agreement between the two predictive

maps. This evaluation was not a measure of a modeling

method’s overall prediction accuracy potential, but did

provide an assessment of the methods overall stability in

its predictions when presented with incomplete species

occurrence data sets.

Species level characteristics

To obtain an approximation of each taxon’s distribu-

tional spatial extent and ecological characteristics within

California we used the full set of occurrence points

available in CNDDB for each taxon. For the estimated

distributional spatial extent we used a kernal density

estimator (Elith and Burgman 2003, Fortin et al. 2005),

to generate polygons encompassing probability density

functions of 0.75 around the occurrence points and then

calculated the polygon’s total area to characterize a

taxon’s distributional spatial extent. We calculated two

measures of the environmental niche: marginality and

tolerance, using ecological niche factor analyses (ENFA

in BIOMAPPER; Hirzel et al. 2002). Marginality is the

difference between the species optimum and the mean

environmental conditions in the study area and is

therefore representative of the species’ ecological niche

position. Tolerance describes the species’ niche breadth

by comparing the variability in the environmental

conditions where the species occurs to the range of

environmental conditions in the study area. We con-

ducted Spearman’s Rank non-parametric correlations to

evaluate the relationship between model performance

and ecological characteristics.

Results

The distribution of AUC values for the four modeling

methods for each of the six sample size categories are

represented in the box plots of Fig. 2. AUC was

generally highest for the 100-sample size models for all

methods except GARP where models generated with a

sample size of 50 performed very well. AUC generally

scores increased with sample size for all modeling

methods. The AUC values reached near maximal levels

at 75 observations for Bioclim; 50 for both Domain and

Maxent; 10 for GARP whereby they remained relatively

consistent for that sample size category and all cate-

gories above it. In some instances the AUC scores

decreased at larger sample sizes but for the most part

these changes were insignificant. Overall, Domain and

Maxent achieved the highest AUC values followed by

GARP and then Bioclim across most sample sizes. The

18 taxa modeled displayed considerable variation in

model performance as evaluated by AUC. This result

was mirrored in the other two evaluation methods, which

similarly had a large spread of evaluation measure

values.

Similar box plots for prediction success using thresh-

olds identified using the ROC curve are presented in

Fig. 3. Again prediction success increased with sample

size though it did not reach a maximum achievable value

except possibly for GARP and Maxent with data sets

of 75 samples. At samples sizes between 5 and 25,

the method performance from highest to lowest was:

Maxent, GARP, Bioclim, and Domain. This order

changed for sample size categories between 50 and 100

to be GARP, Maxent, Domain, and Bioclim, though

differences between the performances of the four model-

ing methods were more marked at the smaller sample

sizes. The average range in values for prediction success

between models built with 5 and 100 occurrences was

smallest for Maxent (sample size 5 mean: 61.2; sample

size 100 mean: 90.9), followed by GARP (sample size

5 mean: 32.1; sample size 100 mean: 95.6), Bioclim

(sample size 5 mean: 11.6; sample size 100 mean: 85.4)
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Fig. 1. Confusion matrix used to spatially compare the replicate
model to the full 150-occurrence dataset model for the same
taxon and modeling method.
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and then Domain (sample size 5 mean: 8.5; sample size

100 mean: 92.3).

These values should be considered in conjunction with

the area predicted present as a percentage of the total

study area (Fig. 4). Given that we are evaluating the

models in a presence-only framework we should be

concerned with minimizing the potential of gross com-

mission errors. Therefore when absence data is not

available to quantitatively evaluate commission errors a

good model could be considered one that achieves low

omission errors (i.e. high prediction success) while still

generating the most parsimonious model with regard to

the total area (i.e. number of 1 km2 cells) predicted

positive. In general, Domain and Bioclim predicted the

smallest area, followed by Maxent and then GARP,

though this relationship varied with sample size. The

area predicted as suitable for a given species by Maxent

remained fairly level at sample sizes of 25 and above

while the other methods predicted more area with

increasing sample sizes. The most noticeable difference

among methods across samples sizes was the placement

of Maxent, which predicted the largest area of all

modeling methods at sample size 5 (mean: 8.0) and the

smallest area using 100 occurrences (mean: 13.2) and

Fig. 2. Box plot displaying the
interquantile range and outliers
around the median AUC
values of ROC plots for each
modeling method by sample
size category.
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Fig. 3. Box plot displaying the
interquantile range and outliers
around the median prediction
success values for each
modeling method by sample
size category.

5 10 25 50 75100 5 10 25 50 75100 5 10 25 50 75100 5 10 25 50 75100

Sample Size

0

20

40

60

80

100

P
re

di
ct

io
n 

S
uc

ce
ss

 (
%

)

Bioclim Domain GARP Maxent

ECOGRAPHY 29:5 (2006) 779



therefore had the smallest range of average area pre-

dicted of all modeling methods. Bioclim followed with

the next smallest range of average area predicted (sample

size 5 mean: 0.8; sample size 100 mean: 14.7), followed

by Domain (sample size 5 mean: 0.4; sample size 100

mean: 14.7), and the range was largest for GARP

(sample size 5 mean: 3.0; sample size 100 mean: 21.6).

At the 100 sample size category GARP predicted on

average 64 percent more area than Maxent at the same

sample size category.

The spatial comparisons of each replicate to its full

150-sample size model summarized using kappa, are

displayed in the box plots of Fig. 5. The kappa

coefficient increased with larger sample size categories

for all modeling methods and an asymptote was not

reached for any method, suggesting that maximal

concordance was not achieved and will likely continue

to increase with sample size until the full data set is used.

The order of the four modeling methods level of

concordance as evaluated by the kappa coefficient again

differed by sample size category, but Maxent achieved

the highest values for every size category.

Correlations among the three ecological characteris-

tics, marginality, tolerance and distributional spatial

extent were as follows: extent and tolerance were

positively related (Spearman’s R�/0.74, pB/0.05); extent

Fig. 4. Box plot displaying the
interquantile range and outliers
around the median percent area
predicted present for each modeling
method by sample size category.
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Fig. 5. Box plot displaying the
interquantile range and outliers
around the median Kappa for each
modeling method by sample size
category when considering the full
150 model as the observed.
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Fig. 6. Mean AUC values for models built with
a sample size of 100 occurrences for each taxon
and modeling method (n�/10). Taxa are sorted
in ascending order by (a) marginality (b)
tolerance and (c) estimated spatial extent in
California.
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and marginality were negatively correlated, though not

significantly (Spearman’s R�/�/0.34); and tolerance and

marginality were negatively correlated (Spearman’s R�/

0.57, pB/0.05). Graphical representation of the relation-

ship between the taxa’s marginality, tolerance and

distributional spatial extent, and AUC for models

generated with sample sizes of 100 occurrences are

presented in Fig. 6. These relationships were consistent

across a range of sample sizes (see Table 3 for sample

sizes 5, 50, and 100), and therefore only data for the

largest sample size are displayed graphically and a subset

in Table 3. Marginality was positively related to AUC

(Fig. 6a, Table 3). Generally as tolerance (breadth of

environmental space used) increased, model predictive

accuracy decreased (Fig. 6b, Table 3). Likewise, as

taxa spatial distributional extent increased, model pre-

diction accuracy decreased (Fig. 6c, Table 3), though

Spearman’s R was generally higher for tolerance than for

spatial distributional extent. Similar results were ob-

tained for the relationship between the three ecological

characteristics and predicted success (results not shown),

although the response was not as strong as for AUC.

Discussion

Model accuracy increased with larger sample sizes for all

modeling methods across the 18 California taxa tested.

Nonetheless, useful models were produced with as few as

5�10 positive observations, and models produced with

50 observations were similar to those created with twice

as many locations. This result, along with the indication

that ecologically specialized species are easier to model

than wide ranging species, is especially encouraging for

modeling rare species. Also, given that distribution

modeling can be used for a variety of different objectives

ranging from guiding future exploration of a species

range to creating an accurate model for conservation

planning, models built with few points, while not as

accurate as those built with large datasets and poten-

tially not appropriate for all applications, are still useful.

Our results increase the relevance of data housed in

museum or herbarium collections, or similar databases

such as those maintained by NatureServe and its

network of natural heritage programs (Stein et al.

2000, Graham et al. 2004). As such occurrence databases

become more widely available, thereby making species

distribution modeling more accessible to conservation

planners, research such as that presented in this paper is

imperative to guide modelers.

Maxent had the strongest performance of the methods

tested here because it performed well and remained fairly

stable in both prediction accuracy and the total area

predicted present across all sample size categories.

Further, it often had the highest accuracy and spatial

concordance, especially for the two smallest sample size

categories. These results indicate that Maxent can some-

what compensate for incomplete, small species occur-

rence data sets and perform near maximal accuracy level

in these conditions. The success of Maxent is likely due

to its regularization procedure that counteracts a ten-

dency to over-fit models when using few species occur-

rences (Phillips et al. 2006). Our results support those

obtained by Elith et al. (2006) who also found that

Maxent was one of the strongest performers in a large

model comparison study.

In contrast, Bioclim does not appear to be capable of

maximizing its accuracy potential with small sample

sizes and did not perform as well as the other modeling

methods using the datasets of larger samples. For these

reasons we would not suggest its use when modeling with

small numbers of species observations. It is interesting to

remark that Bioclim did attain relatively high concor-

dance at the larger sample size categories when spatially

compared to models generated with all 150-occurrences.

This result is not surprising given that the Bioclim

algorithm does not extrapolate beyond the bounds of the

environmental conditions at known locations of occur-

rence. As additional observations are included in the

development of the Bioclim model, the envelope defining

the environmental conditions at known occurrences will

by default expand from defining a small portion of the

species’ full environmental envelope (here developed

with all 150-occurrences) towards defining a larger

portion of that full envelope.

In some respects Domain and GARP performed fairly

similarly, achieving relatively high prediction accuracy

values at large sample size categories with low prediction

success and spatial concordance at small sample sizes.

However, the two evaluation measures of prediction

accuracy (AUC and prediction success) revealed con-

flicting assessments of GARP’s performance. The AUC

Table 3. Spearman’s R correlations between model performance as measured by AUC and species characteristics for models built
with 3 different sample sizes; 5, 50 and 100 samples.

Bioclim Domain GARP Maxent

Sample size 5 50 100 5 50 100 5 50 100 5 50 100

Extent �/0.72 �/0.69 �/0.76 �/0.68 �/0.65 �/0.62 �/0.60 �/0.59 �/0.64 �/0.77 �/0.57 �/0.63
Tolerance �/0.55 �/0.84 �/0.78 �/0.86 �/0.81 �/0.80 �/0.84 �/0.75 �/0.86 �/0.82 0.74 �/0.79
Marginality 0.14* 0.67 0.72 0.62 0.77 0.78 0.67 0.76 0.81 0.76 0.86 0.85

*Indicates not significant; all other values are significant at a level of p�/0.05.
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evaluation indicated that GARP models reached near

maximum accuracy (ca 10% lower AUC than the full

model AUC) when using sample sizes of 10 observations,

a result that is supported by Stockwell and Peterson

(2002), but when evaluating the models using prediction

success, the maximum accuracy was reached at the

75-sample size category. The inconsistent assessment of

model prediction accuracy supports the necessity to

evaluate models with multiple evaluation metrics. Speci-

fically, metrics such as prediction success should be

reviewed with caution when not accompanied with total

suitable area predicted. GARP had the largest prediction

success values for the larger sample size categories but

predicted a spatial area that far exceeds the other three

modeling methods, thereby increasing its chances of

correctly classifying positive occurrences but as a result

most likely increasing its commission error rate as well.

Manel et al. (2001) also cautioned against basing

evaluations of presence-absence model performance

solely on prediction success.

All things considered we interpret our results to

indicate that overall Domain performed better than

GARP because Domain had higher AUC values for all

sample size categories. The AUC of a ROC plot

generated with presence and background data evaluates

a model based on its prediction success but also

penalizes it for predicting proportionately larger spatial

areas (Phillips et al. 2006), thereby evaluating both

omission and commission errors simultaneously. Hence,

the low AUC values obtained by GARP at low sample

size categories likely reflect commission error, while the

Domain models appear to have less commission error.

Further, the threshold selection strategy most likely

artificially decreased Domain’s prediction potential for

the smaller sample size categories as assessed by both the

prediction success and spatial comparison evaluations.

Since Domain derives a point-to-point distance for each

pixel based on its proximity in environmental space to

the most similar occurrence, it follows that when models

are built with fewer occurrences this distance will be

greater.

We confirm the results of other researchers that the

ecological characteristics of model species affect model

accuracy potential, where species widespread in both

geographic and environmental space are generally more

difficult to model than species with compact spatial

distributions (Araujo and Williams 2000, Stockwell and

Peterson 2002, Thuiller et al. 2003, Segurado and Araujo

2004). In all but one case (Table 3), significant relation-

ships existed between model performance (AUC) and

spatial extent of a species distribution, tolerance, and

marginality. These relationships were consistent across

all sample size treatments indicating that the ability to

model species effectively is strongly influenced by species

ecological characteristics independent of sample size.

Tolerance generally had the highest correlation with

AUC, indicating that environmental space occupied by a

given species might be a better measure than geographic

space occupied, although the kernel density estimator

used to estimate the species’ spatial ranges likely over-

estimated the area occupied for some species creating

artificial outliers. In particular the range size estimator

undoubtedly overestimated the spatial range of the

monarch butterfly (Danaus plexı́ppus, range size esti-

mated as 105 874 km2, tolerance 1.64) a mostly coastal

and patchily distributed wintering butterfly species.

In this study the species with the smallest geographic

extent of occurrence and very low tolerance (small niche

breadth), the California gnatcatcher Polioptila califor-

nica generally had the highest AUC and prediction

success values, whereas the opposite was found for the

western pond turtle Clemmys marmorata , which has the

widest geographic range of the study species within

California and a very high ecological tolerance. Our

results provide support for the explanation offered by

Stockwell and Peterson (2002) that local ecological

adaptation by sub-populations is more likely to occur

for widely distributed species resulting in different

habitat preferences in discrete parts of the species’ range.

In climatic modeling each sub-population would have a

distinct climatic range in which it occurs and therefore

when the species is modeled as a whole over its entire

geographic range, the total climatic range encompasses

climatic conditions not suitable for occupancy, thereby

overestimating the species’ ecological climatic breadth.

The fact that the models for the two species in this study

that have considerable taxonomic confusion regarding

their Californian distributions, the western pond turtle

and the coast horned lizard Phrynosoma coronatum ,

performed poorly provides support to notion that local

ecological adaptation results in a decrease in model

accuracy. It would be interesting to partition the data for

these two species based on the geographic boundaries of

the proposed subspecies or genetic lineages to determine

whether the resulting models do indeed result in an

increase in model accuracy.

Other possible explanations for variation in model

performance not related to geographic range size or

ecological niche breadth are that some species are just

not suited for climatic modeling and/or the spatial grain

(pixel resolution) was inappropriate for modeling some

taxa’s distribution in the geographic study area of

California. Models for the red-legged frog Rana aurora

would likely have benefited from the inclusion of a

variable describing the distribution pattern of introduced

bullfrogs and the western pond turtle models may have

been improved with a description of the amount of

wetlands present within an area surrounding an occur-

rence. These are examples of cases where the climatic

variables may be insufficient to model the species’

distribution and where important variables that either

positively or negatively contributed to the observed
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spatial distribution pattern are missing from model

formulation, thereby resulting in relatively poor predic-

tive distribution models.

Of course, as with any comparative modeling method

exercise, these results may differ in a new study area, at a

different spatial scale (extent and/or grain), with varying

qualities of model data (species and environmental), and

for study species of different ecological characteristics.

Our results clearly indicate that future studies should use

multiple evaluation measures, because each measure

provides only a portion of the elusive ‘‘truth’’ of the

predictive ability of a species distribution model. Further,

while we found that reasonable models could be gener-

ated with low sample sizes, we sub-sampled from a larger

set of data and presumably obtained a relatively repre-

sentative, albeit small, number of points. However, if

decreasing sample size increases bias, which may be the

case with data collected in an ad-hoc fashion, then models

built with small samples may be quite poor. The fact that

we could develop models with small samples for some

species does not mean this will be possible for all species.

In general, practitioners should remember that models

are simply an estimate of a species’ potential distribu-

tion. Species distribution modeling cannot replace field-

work intended to collect more distributional data but

can be a useful tool for data exploration to help identify

potential knowledge gaps and provide direction to

fieldwork design (Engler et al. 2004). By carefully

evaluating models and including both species character-

istics and sample size in our analyses our results indicate

considerable promise for modeling rare species. This

result should encourage conservation practitioners to

explore the use of distribution modeling across a variety

of applications.
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