Rapid Assessment of Plant and

Animal Vulnerability to Climate Change
Bruce E. Young, Kimberly R. Hall, Elizabeth Byers,
Kelly Gravuer, Geoff Hammerson, Alan Redder, and
Kristin Szabo

Although scientists have been concerned about climate
change for decades, many policy makers and resource managers have
only recently recognized the urgency of the problem. Now resource man-
agers are increasingly asked to identify which of the species on the lands
and waters they oversee are most vulnerable to climate change-induced
declines. Knowing which species are vulnerable and why is a critical input
for developing management strategies to promote persistence of species
as climates change. Comparing vulnerabilities across species is difficult,
however, because species respond differently to change (Overpeck et al.
1991, Davis and Shaw 2001) and because climate change is likely to im-
pact species both directly and indirectly. Further, the same species may
respond differently in different places, due to variations in exposure to
climate change or differences in key habitats or species interactions. Also,
research on climate change vulnerability is growing rapidly (Brodie et al.
this volume) and managers often have little time to keep abreast of new
findings (Heller and Zavaleta 2009, Lawler et al. 2009a).

Climate change vulnerability is now on the agenda of international
entities such as the European Union and the International Union for the
Conservation of Nature (IUCN; CEC 2006, Foden et al. 2008). In the
United States, state fish and wildlife agencies increasingly need ways to
identify vulnerable species as they begin to revise state wildlife action
plans. In the United States, state fish and wildlife agencies increasingly
need ways to identify vulnerable species as they begin to revise state wild-
life action plans. Wildlife action plans, mandated by the US Congress, re-
quire assessments of species and habitats at risk and the development of
strategies to prevent species from becoming endangered (AFWA 2009).
Revisions of these plans are required every 10 years, but revisions to spe-
cifically include climate change are not mandated at this time. Similarly,
US federal land managing agencies are seeking ways to address species
vulnerability as they begin to modify conservation strategies to account
for climate change (Blay and Dombeck, this volume).

Most assessments of vulnerability to climate change tend to focus on
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single factors, such as changes in distribution (e.g., from bioclimatic
models; Peterson et al. 2002, Midgley et al. 2003, Thomas et al. 2004,
Lawler et al. 2009b) or changes in phenology and the potential for phe-
nological mismatches (e.g., Bradley et al. 1999, Visser and Both 2005).
More recently, scientists have emphasized how key behavioral or demo-
graphic characteristics may contribute to vulnerability (e.g., Humphries
et al. 2004, Jiguet et al. 2007, Laidre et al. 2008) and to species response
patterns at various organizational scales (Parmesan 2007, Willis et al.
2008). Further, several theoretical treatises describe potential frame-
works for vulnerability assessments, including evaluations of exposure to
climate change, inherent sensitivity, and adaptive capacity (Fiissel and
Klein 2006, Williams et al. 2008, Austin et al., this volume), as well as
guidance on how to incorporate uncertainty and relative risk (Schneider
etal. 2007).

Building on these findings, we have developed a “climate change vul-
nerability index” (hereafter, “index”) to serve the needs of wildlife man-
agers for a practical, multifaceted rapid assessment tool. The aim of the
index is to provide a means of rapidly distinguishing species likely to be
most vulnerable, defined as the degree to which a species is susceptible to
detrimental change (Smit et al. 2000). After using the index, managers
may wish to perform more in-depth (and resource-intensive) vulnerabil-
ity analyses of species highlighted by the tool as being particularly vulner-
able. The index relies on natural history and distribution factors that are
associated with sensitivity to climate change and projections of climatic
changes for the assessment area. It does not require advanced technical
expertise, so it can be used efficiently by anyone with biological training
and access to the relevant natural history and distribution information.

The index is flexible in that it can assess plants and animals from both
terrestrial and aquatic habitats, and can handle missing data and uncer-
tainty in species sensitivity measures. It can also handle input from stud-
ies that document vulnerability or project future suitable ranges, when
available. Its output includes both a vulnerability category for the species
of interest and a report on the key factors that have contributed to the
ranking, which can help inform conservation actions. Here we discuss
the mechanics of the index and report on preliminary results from a case
study of vertebrates and mollusks included in Nevada’s state wildlife ac-
tion plan.

Climate Change Vulnerability Index
We divide vulnerability into exposure to changes in climate and spe-
cies sensitivity (Schneider et al. 2007, Foden et al. 2008, Williams et al.
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2008). Exposure is the magnitude of projected climate change across the
portion of the range of the focal species that lies within the geographic
area considered. Species sensitivity includes intrinsic factors such as nat-
ural and life-history traits that promote resilience to change (such as di-
etary versatility or identification as a habitat generalist), traits that indi-
cate increased risk (such as a strong potential for disruption of key species
interactions), and traits that indicate capacity to adapt to change (such as
dispersal ability and genetic variation). The index scores a species in rela-
tion to multiple intrinsic and extrinsic sensitivity factors and then weights
the score depending on the magnitude of climate change projected. Any
information available on documented responses of the species to climate
change is then combined with the vulnerability score to produce a final
index score (figure 7.1).

For simplicity of use, we have developed the index as an MS Excel
workbook (available at www.natureserve.org/climatechange) that al-
lows users to enter exposure data and then select categorical answers to
questions that assess how the species’ natural history may influence its
relative vulnerability to climate change. Extensive documentation pro-
vides criteria for determining how to “score” sensitivity for each factor,
but the user can enter more than one value to indicate uncertainty in spe-
cies information (Young et al. 2010). The workbook then calculates an in-
dex score from the entries on exposure and sensitivity, and converts it to a
categorical vulnerability score (extremely vulnerable, highly vulnerable,

Exposure Sensitivity

Documented/Modeled
Response

Vulnerability Score/

Vulnerability Index Score

Figure 7.1. Major components of the climate change vulnerability index
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moderately vulnerable, not vulnerable/presumed stable, not vulnerable/
increase likely). If a minimum number of factors are not scored or if the
exposure data are incomplete, the index reports a value of “insufficient
evidence.”

Relationship to Existing Conservation Status Assessments

We designed the index to work in concert with, and not duplicate, in-
formation contained in standard conservation status assessments such as
the IUCN Red List, which is used worldwide, or NatureServe conservation
status ranks, which are used extensively in the United States and Canada
(Master etal. 2000, Mace et al. 2008). Factors such as population size and
range size can influence vulnerability to climate change (Hampe 2004,
Aitken et al. 2008, Laidre et al. 2008), but they are also fundamental in-
puts to assessments of conservation status. To avoid duplication, we have
excluded these factors from the index. Because population and range size
are major factors in determining conservation status, repeating them in
our assessments would cause most threatened species to also be scored as
vulnerable to climate change. The purpose of the index is to highlight spe-
cies with other intrinsic and extrinsic factors that place them at risk.

Indirect Effects

In many cases, climate change impacts species both directly (e.g., by
drought-induced declines in reproduction or survival) and indirectly
through changes in interspecific interactions (Lawler et al. 2009a). To cite
a popular example, the warming experienced in western North America
over the past three decades has not directly caused the major declines
documented in lodgepole pine (Pinus contorta). Instead, warmer winters
have allowed mountain pine beetles (Dendroctonus ponderosae) to rapidly
expand their range northward, leading to the decimation of large stands
of pines (Carroll et al. 2004). While we recognize that shifts in competi-
tive, predator-prey, or host-parasite interactions are likely to be very im-
portant, we have not attempted to incorporate them into this index. How
such interactions change as a result of changes in climate is difficult to
predict, even in controlled experiments (Suttle et al. 2007, Spiller and
Schoener 2008, Tylianakus et al. 2008). The sheer magnitude of poten-
tial biotic and abiotic factors that could contribute to variations in the
strength of interactions suggests that grappling with them in a climate-
change context will continue to be a major challenge (Tylianakis et al.
2008). However, the index does reflect species’ dependence on particular
types of interactions (e.g., between plant and pollinator) because these
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interactions may be uncoupled if the component species respond differ-
ently to climate change.

Accounting for Exposure

The index accounts for direct exposure to climate change by integrat-
ing the magnitude of predicted change across the range of a species within
the geographic area considered. The time horizon is 2050, a date far
enough in the future for significant changes to have occured, but before
temperature projections from different emissions scenarios and global
circulation models diverge substantially (Meehl et al. 2007). Downscaled
predictions of climate change are becoming more readily available to fa-
cilitate assessment of exposure (e.g., Maurer et al. 2007; data available
for viewing and download at www.climatewizard.org).

We considered both the severity and the scope of climate change in
our assessment of exposure. The index divides temperature increase and
precipitation increase/decrease (severity) into categories and defines the
percentage of the species’ range within the analysis area that will expe-
rience each severity category of temperature and precipitation change
(scope). We used multiples of the standard deviation of predicted mid-
century change in annual mean temperature and precipitation in the
conterminous United States (Maurer et al. 2007; medium [A1B] emission
scenario, ensemble average of 16 global circulation models) to delimit
categories describing the magnitude of climate exposure. More specific
seasonal climatic factors might be more relevant for particular species
(e.g., Carroll et al. 2004), but because this information is rarely known,
we used the annual data as proxies for severity of climate change.

Indirect Exposure and Species Sensitivity

Next, theindex presents four factorsto assess extrinsicindirect exposure
and 17 factors, each supported in the literature, to evaluate species sen-
sitivity (table 7.1). For each factor, the species is scored according to how
much the factor increases or decreases vulnerability to climate change.

Documented or Modeled Vulnerability

For a small but growing number of species, field or modeling studies
provide an indication of their vulnerability, as in documenting how their
populations have responded to climate change in the recent past. Because
these findings are valuable indicators of vulnerability, the index captures
them in four factors that are considered separately from exposure and
sensitivity (table 7.1).
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Computing an Index Score

To calculate an overall score, the index first combines information on
exposure and sensitivity to produce a numerical sum, calculated by add-
ing subscores for each of the extrinsic and intrinsic species sensitivity fac-
tors. Factors receive values (3.0, 2.0, 1.0, 0, -1.0, and -2.0), depending
on the degree to which vulnerability is increased or decreased. If a factor
is scored in multiple levels, the index uses an average.

The value for each factor is weighted by exposure to calculate a sub-
score. Climate influences vulnerability factors in different ways. For most
factors, the exposure weighting is a climate stress value that combines
data on projected change in both temperature and precipitation. In these
cases, the weighting factor is the product of weightings for temperature
(0.5, 1.0, 1.5, or 2.0, depending on the temperature increase) and pre-
cipitation (0.5, 1.0, 1.5, or 2.0, depending on change in precipitation).
Table 7.1 summarizes the weighting used for each factor.

The exposure/sensitivity sum is therefore calculated as

S fw, [eq.1]

where f'is the value assigned to each factor according to how it influences
sensitivity, and w is the specific exposure weighting for each factor i. The
thresholds for the index scores of extremely vulnerable, highly vulner-
able, moderately vulnerable, not vulnerable/presumed stable, and not
vulnerable/increase likely are 10.0, 7.0, 4.0, and -2.0. The thresholds
correspond with possible scenarios of exposure and sensitivity. For exam-
ple, the “extremely vulnerable” threshold is reached for species with high
exposure and at least two indirect exposure/sensitivity factors scored as
greatly increase vulnerability, or with high exposure and three factors
scored as increase vulnerability.

The documented/modeled response factors are scored identically to
the exposure/sensitivity factors and are summed independently with no
weighting, because exposure has already been incorporated in the stud-
ies upon which the factors are based. The thresholds for the index scores
are 6.0, 4.0, 2.0, and -1.0, using the same logic as is used for exposure/
sensitivity while accounting for the fewer documented/modeled response
factors.

The overall index score is either the exposure/sensitivity score, if there
is no documented/modeled response information, or an average of the
exposure/sensitivity and documented/modeled response scores. In the
case of adjacent scores, such as moderately vulnerable and presumed sta-
ble, the average is defined as the score higher on the vulnerability scale. If
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fewer than 3 indirect exposure or 10 species sensitivity factors are scored,
the index score is insufficient evidence.

Uncertainty

Predicting vulnerability to climate change involves uncertainty about
future greenhouse gas emissions, how the climate system will respond to
these emissions, how species will respond to climate change, and how in-
direct effects will influence species (Patt et al. 2005, Lawler et al. 2009a).
Developing a user-friendly tool requires compromise, and the sheer com-
plexity of exhaustively incorporating uncertainty is beyond the scope of
this project. Because our target audience is resource professionals with
knowledge of species’ natural history, we have allowed users to evaluate
the results when more than one level of vulnerability is plausible for one
or more factors. The index runs 1,000 Monte Carlo simulations, randomly
selecting a single vulnerability level for each factor in which more than
one level has been entered. The index calculates a measure of confidence
in species information as very high, high, or moderate if more than 90%,
80%, or 60% of the simulation runs, respectively, yield the same score
as the original index score. In cases with less than 60% concordance, the
confidence is low.

Application of the Climate Vuinerability Index

Nevada Case Study

In 2008, Nevada set out to revise its state wildlife action plan to better
address climate change. The Nevada Natural Heritage Program assessed
the relative vulnerability of 263 species of “conservation priority,” ex-
plaining why some species were more vulnerable than others. Although
these species are of conservation concern in Nevada, they have range-
wide conservation statuses varying from highly threatened to common
and secure. Because so many species are involved, Nevada Heritage has
used the climate change vulnerability index as a rapid and cost-efficient
tool. The project is ongoing, but here we present results for the 216 prior-
ity vertebrates and mollusk taxa.

The mid-century climate predictions for Nevada suggest warming of
approximately 2.6° C to 3.2° C and variable precipitation scenarios in dif-
ferent parts of the state (figure 7.2). The index sorted taxa into differing
levels of vulnerability to climate change (table 7.2, figure 7.3). The major-
ity of taxa fell in the moderately vulnerable and not vulnerable/presumed
stable categories. Across taxa, 100% of mollusks, 80% of fish, 38% of am-
phibians, 30% of reptiles, 35% of mammals, and 4% of birds are at least
moderately vulnerable. Natural history and distribution knowledge was
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Table 7.2. Taxa scored preliminarily as “extremely vulnerable,” “highly vulnerable,” and
“increase likely” by the climate change vulnerability index applied for distributions within

Nevada
Conservation
Taxon Group status?
Extremely vulnerable
Pygmy rabbit, Brachylagus idahoensis Mammal G4, S3
Preston White River springfish, Crenichthys Fish T1,S1
baileyi albivallis
Desert dace, Eremichthys acros Fish G1,81
Monitor Valley speckled dace, Rhinichthys Fish T1,S1
osculus ssp. 5
Bull trout, Salvelinus confluentus pop. 4 Fish T2,S1
Duckwater springsnail, Pyrgulopsis aloba Snail G1, s1
Southern Duckwater springsnail, Pyrgulopsis Snail G1,S1
anatina
Elongate Cain Spring springsnail, Pyrgulopsis Snail G1, S1
augustae
Pleasant Valley springsnail, Pyrgulopsis aurata Snail G1, S1
Fly Ranch springsnail, Pyrgulopsis bruesi Snail G1, S1
Northern Soldier Meadow pyrg, Pyrgulopsis Snail G1,S1
militaris
Bifid duct springsnail, Pyrgulopsis peculiaris Snail G2, S1
Antelope Valley springsnail, Pyrgulopsis pellita Snail G1, S1
Highly vulnerable
Sierra Nevada mountain beaver, Aplodontia rufa Mammal T3,S1
californica
Sagebrush vole, Lemmiscus curtatus Mammal Gb, S3
Pale kangaroo mouse, Microdipodops pallidus Mammal G3, S2
Humboldt yellow-pine chipmunk, Neotamias Mammal T2,S2
amoenus celeris
American pika, Ochotona princeps Mammal G5, S2
California bighorn sheep, Ovis canadensis Mammal T4, S3
californiana
Columbia spotted frog, Rana luteiventris Amphibian Not
(Toiyabe subpopulation) assessed at
subpopulation
level
Wall Canyon sucker, Catostomus sp. 1 Fish G1, s1
Railroad Valley springfish, Crenichthys nevadae Fish G2, S2
Fish Lake Valley tui chub, Gila bicolor ssp. 4 Fish T1,S1
Railroad Valley tui chub, Gila bicolor ssp. 7 Fish T4, S1
Big Smoky Valley tui chub, Gila bicolor ssp. 8 Fish 71,81
Pahranagat roundtail chub, Gila robusta jordani Fish T1,S1
White River spinedace, Lepidomeda albivallis Fish G1,81
(Continued)
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Table 7.2. (Continued)

Conservation
Taxont Group statust
Lahontan cutthroat trout, Oncorhynchus clarki Fish T3,S3
henshawi
Big Smoky Valley speckled dace, Rhinichthys Fish T1,S1
osculus lariversi
Diamond Valley speckled dace, Rhinichthys Fish TH, SH
osculus ssp. 10
Oasis Valley speckled dace, Rhinichthys osculus  Fish T1,S1
ssp. 6
White River speckled dace, Rhinichthys osculus Fish T2,S2
ssp. 7
Steptoe hydrobe, Eremopyrgus eganensis Snail G1,S1
Turban pebblesnail, Fluminicola turbiniformis Snail G3, S-
Smooth juga, Juga interioris Snail G1, S1
Elko pyrg, Pyrgulopsis leporina Snail G1, S1
Wong's pyrg, Pyrgulopsis wongi Snail G2, S1
Increase likely
Clark’s grebe, Aechmophorus clarkii Bird Gb, S4
Western grebe, Aechmophorus occidentalis Bird Gb, S4
Cinnamon teal, Anas cyanoptera Bird Gb, Sb
Bald eagle, Haliaeetus leucocephalu Bird Gb, S1
Least sandpiper, Calidris minutilla Bird Gb, S4
Short-eared owl, Asio flammeus Bird G5, S4
Costa’s hummingbird, Calypte costae Bird Gb, S3
Lewis’s woodpecker, Melanerpes lewis Bird G4, S3
Olive-sided flycatcher, Contopus cooperi Bird G4, S2
Mountain willow flycatcher, Empidonax traillii Bird T3, S2
brewsteri
Black phoebe, Sayornis nigricans Bird G5, S4
Loggerhead shrike, Lanius ludovicianus Bird G4, sS4
Phainopepla, Phainopepla nitens Bird Gb, S2
Virginia’s warbler, Vermivora virginiae Bird Gb, S4
Tricolored blackbird, Agelaius tricolor Bird G2, S1
Hoary bat, Lasiurus cinereus Mammal G5, S3
Long-eared myotis, Myotis evotis Mammal Gb, S4
Little brown bat, Myotis lucifugus Mammal G5, S3
Northern river otter, Lontra canadensis Mammal G5, S2
Brush mouse, Peromyscus boylii Mammal Gb, S3

1 NatureServe conservation status ranking in which G indicates status for entire global range of a
species (T is substituted for G in subspecies), and S indicates status within the state of Nevada.
Conservation status scores range from 1 (critically imperiled) to 5 (secure); H indicates species
known only from historical records but possibly still extant. A dash (-) indicates that a rank is not
applicable. See Master et al. 2000 for more details.
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Figure 7.2. Predicted change in temperature and precipitation for Nevada in 2050,
under a medium (A1B) emissions scenario
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Figure 7.3. Vulnerability to climate change of selected Nevada mollusks (n = 24), fish
(n = 40), amphibians (n = 8), reptiles (n = 20), mammals (n = 52), and birds (n = 72).
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Table 7.3. Comparison between conservation status at both global (rangewide) and state
level and climate change vulnerability. See table 7.2 and Master et al. (2000) for explanation
of conservation status rankings.

Climate change vulnerability

Global Extremely Highly Moderately Presumed Increase
conservation status vulnerable  vulnerable  vulnerable stable likely
Possibly extinct (GH) 0 1 3 1 0
Critically imperiled (G1) 10 11 25 9 0
Imperiled (G2) 2 4 5 3 1
Vulnerable (G3) 0 4 3 11 1
Apparently secure (G4) 1 1 6 24 3
Secure (G5) 0 2 7 61 15
Nevada state

conservation status

Possibly extirpated (SH) 0 1 3 2 0
Critically imperiled (S1) 12 13 28 18 2
Imperiled (S2) 0 5 8 34 4
Vulnerable (S3) 1 3 2 32 5
Apparently secure (S4) (0] 0 2 20 8
Secure (Sb) (0] 0 0 3 1

generally sufficient to allow assessment of all extrinsic factors and 14 of
the 17 intrinsic species sensitivity factors (table 7.1).

Vulnerability to climate change was highly correlated with conser-
vation status at both the global (rangewide) and state scale (global,
Kendall’s 1 =0.518, p < 0.001; state, T = 0.465, p < 0.001; table 7.3).
Although climate change vulnerability and conservation status are cor-
related, the relationship is not perfect. Four species ranked as apparently
secure or secure (G4 or G5) also scored extremely or highly vulnerable
to climate change. For example, the American pika (Ochotona princeps)
is a widespread mountain inhabitant of western North America, but its
dependence on declining snowpack and limited rocky talus slope habi-
tat, together with its difficulty dispersing from one mountaintop to the
next, renders it vulnerable to climate change in Nevada. Conversely, 34
(62%) of the 55 globally critically imperiled species examined with the
index scored as presumed stable or only moderately vulnerable to climate
change. For Nevada, conservation status is therefore an imperfect proxy
for vulnerability to climate change.

The Monte Carlo simulations revealed that confidence in the index
score was very high or high for 94 (61%) taxa, low for 19 (12%) taxa,

You are reading copyrighted material published by University of Chicago Press. Unauthorized posting, copying, or distributing
of this work except as permitted under U.S. copyright law is illegal and injures the author and publisher.



and moderate for the rest. In most cases, a low confidence score resulted
when the exposure/sensitivity sum was close to the threshold between
two index categories.

Limited historical hydrological niches, anticipated impact from mitiga-
tion-related land use changes, migration to or through a few potentially
vulnerable locations (see also Owen-Smith and Ogutu, this volume),
lack of facultative distribution shifts in response to environmental condi-
tions (such as the tracking by seed-eating birds of cone crops of conifers),
and dependence on specific vulnerable aquatic/wetland habitats were
the factors commonly contributing to vulnerability to climate change
(table 7.1). Good dispersal ability, broad physical habitat requirements,
migration to broad geographical areas, a tendency to shift distribution in
response to environmental conditions, and adaptation to a broad range
of temperatures were the factors that most commonly decreased vulner-
ability (table 7.1).

The climate change vulnerability index enables the state of Nevada to
rapidly assess which of the wildlife species deemed of greatest concern
are most imperiled by changing climate, and most deserving of more in-
depth analysis and management. For each of the six taxonomic groups,
the index succeeded in separating taxa into distinct classes of similar vul-
nerability, thus demonstrating that it is robust to taxonomic affinity for
animals. Of course, only time will tell whether its predictions are borne
out by range and population contractions or expansions. A more immedi-
ate, albeit weak, test of the index would be to compare historical popula-
tion trends with index scores. Many factors influence population trends,
but a preponderance of species scored as vulnerable that began or in-
creased their rate of population decline in the 1970s, when temperatures
began to increase sharply, would support the index’s ability to identify
threatened species.

The index has been a means to identify factors common to many Ne-
vada vertebrates that increase their susceptibility to climate change. A
noteworthy finding from this preliminary assessment is that two traits
shared by many species in this state—limited historical hydrological niche
and dependence on specific vulnerable aquatic/wetland habitats—relate
to precipitation. This reflects the aridity of the Nevada climate as well
as the dependence of many species of conservation concern on specific
hydrological features, such as springs (WAPT 2006). Hence, it would be
worthwhile to look more closely at how increasing temperatures will in-
teract with moisture and wildlife habitats. A more surprising result was
that anticipated climate-change-mitigation-related land use changes
could contribute to several species’ vulnerability. In response to the need
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to reduce emissions, Nevada officials anticipate the construction of so-
lar, wind, and geothermal energy projects that could alter much wildlife
habitat. These projects affect habitat used by nearly half of the species
assessed, so management actions that mitigate detrimental effects to
wildlife should be a priority. On a positive note, the results suggest that
20 species of priority birds and mammals may become more common in
response to climate change.

Our results indicate the feasibility of a means to rapidly categorize spe-
cies by their vulnerability to climate change using readily available nat-
ural-history and distribution information. Further testing is warranted.
This index should be tested on larger scales to incorporate more spatial
variation in climate-change predictions. At small spatial scales, exposure
to climate change may be a constant for all species assessed, because they
essentially all experience the same climate, so the differences in species’
vulnerability would reflect differences in their intrinsic sensitivity. Finally,
although we have developed the index using a variety of species as mod-
els, testing on larger samples of species that were underrepresented or
not included in the Nevada case study, such as insects and plants, would
show whether the index is as robust as desired. These results will allow
for future refinement of this new resource for land managers.
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