Located in a zone of ecological transition, near where the Northern Piedmont and the Blue Ridge meet, Monocacy National Battlefield (MONO, Monocacy) supports a diversity of natural communities. As a protected area within a landscape heavily pressured by development, the park provides opportunities for ecological adaptation in the face of environmental change. However, as global temperatures rise and precipitation patterns become more extreme (Intergovernmental Panel for Climate Change (IPCC) 2013), the natural habitats (see glossary, page 9, for definition of italicized words) of the park are increasingly vulnerable to climate-driven stresses. To begin to understand how climate change will impact terrestrial habitats in the National Capital Region (NCR), the National Park Service partnered with NatureServe to conduct climate change vulnerability assessments. This initial assessment for Monocacy examines how climate and landscape influence vulnerability and identifies areas most and least vulnerable today and in the near future. Our goal is to help park managers and visitors understand climate change vulnerability and support the development of informed management strategies.

WHAT IS CLIMATE CHANGE VULNERABILITY?

We define VULNERABILITY as the risk of losing species and ecosystem processes due to rapid environmental change. We integrate two components of vulnerability, EXPOSURE and ADAPTIVE CAPACITY, to arrive at a single measure. Areas most at risk are those likely to experience big changes in temperature and precipitation (i.e., high exposure) but have little capacity to adapt (i.e., low adaptive capacity). To understand how the climate of Monocacy National Battlefield is changing over time, we analyzed temperature and precipitation over two time periods: observed (1981 – 2014) and near future (through 2040), compared to a mid-century baseline (1948 – 1980). The results presented here are part of a broader regional assessment of vulnerability for 11 NCR parks and the surrounding National Capital Region, interpreted in the context of regional environmental change in the Mid-Atlantic. Our approach describes drivers of climate change vulnerability, how vulnerability is spatially distributed, and a framework for park managers to anticipate and address changes in the coming decades.
HOW VULNERABLE IS MONOCACY NATIONAL BATTLEFIELD?

Monocacy National Battlefield is located in central Maryland, within a highly urbanized and rapidly growing area of the Mid-Atlantic, but an area that also supports important biodiversity. The park is located entirely in the Northern Piedmont, with the Blue Ridge just to the west. These ecoregions, which represent provinces of unique physiography, soils, climate, and vegetation, together contain a diversity of natural communities. As the climate changes, the park can play an important role as part of a network of refugia and stepping stones, connecting natural communities and providing opportunities for adaptation.

To better understand how management actions can protect park resources and enhance the ecological role of the park in a changing world, we first assess the overall VULNERABILITY of terrestrial habitats at Monocacy by combining measurements of EXPOSURE and ADAPTIVE CAPACITY. Next, we characterize the drivers of EXPOSURE (changes in temperature and precipitation) and ADAPTIVE CAPACITY (landscape characteristics).

Research Highlights

During the observed time period (1981 – 2014), we find vulnerability is low to moderate for most of Monocacy National Battlefield, reflecting low to moderate climate change exposure for most of the area. Differences in vulnerability are primarily driven by differences in adaptive capacity across the landscape. Because of the park’s enduring features, adaptive capacity is average or above for most of the park, particularly when compared to the region as a whole. In the near future (through 2040), vulnerability is high to very high for the park due to a sharp increase in exposure. Increased exposure is expected to lead to species turnover, but areas with above average adaptive capacity in the park are expected to continue to support healthy communities of diverse plants and animals into the future, especially if connectivity to other natural lands is maintained.

Observed Climate Change Vulnerability (1981 – 2014)

Monocacy National Battlefield

52% LOW
40% MODERATE
8% HIGH

NCR surrounding area

70% LOW
27% MODERATE
3% HIGH

NEAR FUTURE VULNERABILITY. In the future, vulnerability increases dramatically due to increased exposure with high to very high values recorded for MONO. Due to some areas with high adaptive capacity, about 4% of the park has scores for only moderate vulnerability.

Near Future Climate Change Vulnerability (through 2040)

Monocacy National Battlefield

4% LOW
75% MODERATE
21% HIGH

NCR surrounding area

15% LOW
60% MODERATE
25% HIGH

OBSERVED VULNERABILITY. Vulnerability is low (blue) for 52% of MONO and moderate (yellow) for 40% of the park. Less than 10% of the park has high vulnerability (orange), and there are no areas of very high vulnerability (red). Higher vulnerability occurs where adaptive capacity, especially connectivity, is low, such as in areas along roads or near adjacent urban expansion.
To understand how climate change impacts Monocacy National Battlefield, we analyze **EXPOSURE**, defined as the nature and magnitude of changes in patterns of temperature and precipitation. **Analyses of annual and seasonal climate data** reveal that the park is already experiencing climate change and indicate that park managers can anticipate significantly more change in the near future.

EXPOSURE is measured by analyzing annual and seasonal changes in temperature and precipitation over three time periods. We first characterize a mid-20th century **baseline** (1948 – 1980) and quantify its natural variability. We then compare **observed** climate (1981 – 2014), and **near future** climate (through 2040) to baseline conditions and measure the changes. Baseline and observed climate data is derived from weather station measurements, which reduces uncertainty. Near future projections are derived from an ensemble of 15 global climate models from the IPCC 5th Assessment Report (Taylor et al. 2012, IPCC 2013). Full methods will be documented in a technical report available on the NPS IRMA portal after project completion.

Changes in Temperature

Baseline (1948 – 1980)

- **Temperature**
 - 12.1°C (53.8°F)
 - 22.9°C (72.2°F)
 - 0.9°C (33.6°F)

- **Temperature**
 - Baseline Mean: +0.7°C (+1.3°F)
 - Summer: +2°C (+3.6°F)
 - Winter: +1.5°C (+2.7°F)

Near Future (through 2040)

- **Temperature**
 - Baseline Mean: +1.7°C (+3.1°F)
 - Summer: +2°C (+3.6°F)
 - Winter: +1.5°C (+2.7°F)

Changes in Precipitation

Baseline (1948 – 1980)

- **Precipitation**
 - 1035 mm (40.8 in)

- **Precipitation**
 - Summer: +44.6 mm (+1.8 in)
 - Winter: +9.5 mm (+0.4 in)

Near Future (through 2040)

- **Precipitation**
 - Summer: +48.1 mm (+1.9 in)
 - Winter: +71.8 mm (+2.8 in)

Research Highlights

At Monocacy National Battlefield, temperatures in the **observed** period (green) already show evidence of warming when compared to the baseline (blue). Modest increases in both summer and winter precipitation are detected.

In the **near future** (purple), we anticipate shifts to warmer and drier summers and warmer and wetter winters. Models indicate that by 2040, precipitation may decrease by 15% in the summer as temperatures rise 2°C (3.6°F). In the winter, precipitation is forecast to increase by close to 50% while temperatures rise 1.5°C (2.7°F).
The magnitude of change refers to how much EXPOSURE Monocacy National Battlefield has experienced in recent decades and how much is projected for the near future. By comparing the climate in the observed (1981 – 2014) time period to the historical variability in the baseline (1948 – 1980), we can understand whether temperature and precipitation patterns today are typical of the range of conditions experienced in the past. Temperature and precipitation values falling completely outside their historical range would indicate novel climatic conditions, to which ecosystems may not be adapted. The projected climate of the near future is assessed against the baseline in the same way. Analyzing and mapping EXPOSURE gives managers an understanding of the nature and magnitude of climate change, how it may vary across the landscape, and how exposure contributes to overall vulnerability.

Research Highlights

There is already evidence of changing climate in parts of the Mid-Atlantic region (pink), though observed climate averages do not fall completely outside the range of variation experienced in the past. Temperatures in the observed period have risen, but precipitation patterns are close to historical norms, and overall exposure for Monocacy National Battlefield is relatively low (purple). In the near future, the Mid-Atlantic region and Monocacy rapidly move towards high levels of exposure and novel climate conditions (yellow). The overall exposure score of 0.20 for the near future indicates that by 2040, conditions at the park are likely to be more extreme than in 80% of the baseline years. Extreme temperatures are the primary driver of the exposure score, though shifts in precipitation towards drier summers and wetter winters also contribute.
Adaptive Capacity is the ability of a region or habitat to maintain species and ecological processes as the climate changes. In this study, we focus on two key characteristics of adaptive capacity, **LANDSCAPE DIVERSITY** and **LOCAL CONNECTEDNESS** (Anderson et al. 2016), to assess Monocacy National Battlefield and the terrestrial habitats within it. We identify places that are more or less resilient to the disturbances associated with climate change to help park managers develop informed adaptation strategies.

LANDSCAPE DIVERSITY contains a range of physical conditions and habitats that can support species as they adapt to a changing climate. Within a specific geophysical setting, landscape diversity is scored highest if there is a diversity of landforms (e.g., high ridges, steep slopes, coves, and floodplains), wide ranges in elevation, and a range of soil types. These **enduring features** are the foundation upon which ecological systems are built.

Landscape Diversity by ecological system. For the ecological systems at MONO, the graph displays the percent area in each adaptive capacity category based on landscape diversity. Dark colors indicate higher diversity and thus higher adaptive capacity. Taller bars designate ecological systems that occupy a greater percentage of the park. The Dry-Mesic Oak Forest, which covers about 6% of the park, has above average landscape diversity (blue to dark purple) over about 85% of its area. The River Floodplain and the Mesic Hardwood Forest also have landscape diversity values that are largely above average.

Research Highlights

Landscape diversity is the biggest contributor to areas of higher adaptive capacity at Monocacy. A variety of topographic settings (e.g., hilltops, side slopes facing a variety of directions, and floodplains) provides more microhabitat variation than is found in similar geophysical settings elsewhere.
COMPONENTS OF VULNERABILITY

Local Connectedness

LOCAL CONNECTEDNESS measures the degree to which current land cover patterns (e.g., agriculture, forest, wetlands) are likely to support important ecological processes and the movement and dispersal of species. When natural areas are connected, opportunities are present for climate change adaptation, and vulnerability is reduced.

Research Highlights

Local connectedness is average to below average for most of Monocacy. Some challenges for connectedness that the park faces are major roads and developed areas that create barriers to species movement. At Monocacy, local connectedness generally acts to lower adaptive capacity scores at the park.

Oaks and hickories dominate the canopy on Brooks Hill, an area of high local connectedness and landscape diversity at Monocacy National Battlefield.
Local Trends

Understanding how climate change (EXPOSURE) and local landscape characteristics (ADAPTIVE CAPACITY) influence vulnerability is a central goal of this assessment. We quantified and mapped these relationships for Monocacy National Battlefield and the NCR surrounding area to identify what areas are most or least vulnerable today, and what we can expect in the near future. ADAPTIVE CAPACITY and EXPOSURE scores were divided into low, moderate, high, and very high categories and combined into the overall VULNERABILITY scores as presented on page 2 of this document and as illustrated below.

Research Highlights

In the observed period, vulnerability of Monocacy National Battlefield is generally low to moderate, owing to generally moderate adaptive capacity and relatively low exposure. Some areas of the park are already classified as having moderate exposure, but these areas coincide with zones of moderate to high adaptive capacity. There, high landscape diversity, along with some connectivity to larger intact forests, provides protective benefits in the form of habitat and stepping-stones for species movement and adaptation.

Exposure increases to high levels across the region in the near future, resulting in scores of high to very high vulnerability for most of Monocacy National Battlefield. Differences in vulnerability are driven by differences in adaptive capacity. Vulnerability is lowest (moderate) in the southwest corner of the park, where above average landscape diversity coincides with a band of connected forest along the Monocacy River. Developing forward-looking adaptation strategies aimed at maintaining or increasing adaptive capacity will help ensure that the natural resources of Monocacy National Battlefield can endure the stresses of rapidly changing conditions.
This climate change vulnerability assessment analyzed several components of VULNERABILITY for Monocacy National Battlefield and identified the areas that are most and least vulnerable and why. This work represents an important first step in the application of a climate-smart adaptation framework (Stein et al. 2014) through which park managers can identify, evaluate, and implement adaptation strategies suited to observed conditions and adaptable to conditions in the near future. Additional work is needed to refine vulnerability and adaptive capacity to include other direct and indirect impacts of a changing climate.

Broad adaptation strategies relevant to Monocacy are provided in the Climate Change Vulnerability Impacts and Strategies table. These strategies can support managers as they begin planning for change. The next phases of the project will provide additional information to guide site-specific adaptation actions aligned with these strategies. This work includes assessment of ecosystem-specific drivers of vulnerability, identification of regional priorities for maintaining connectivity, and evaluation of field data to characterize the local impact of non-climate stressors on ADAPTIVE CAPACITY. Through these actions, we can safeguard the natural treasures of Monocacy and ensure that they are resilient for future generations of park visitors.

Climate Change Vulnerability Impacts and Strategies Table

<table>
<thead>
<tr>
<th>Vulnerability Score</th>
<th>Climate Impacts</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>With high adaptive capacity and relatively low climate change exposure, these sites are least at risk. In the near future, there are no areas of low vulnerability at MONO.</td>
<td>Manage for persistence, focus actions on preventing impacts by non-climate stressors (e.g., habitat loss, fragmentation, and invasive species).</td>
</tr>
<tr>
<td>Moderate</td>
<td>With moderate to high adaptive capacity and less exposure, these areas can continue to support diverse natural communities. Moderate vulnerability areas at MONO, like Brooks Hill, provide opportunities for species to move and communities to adapt.</td>
<td>Encourage persistence but accommodate change. Actions should focus on (1) decreasing non-climate stressors to restore or enhance ecological integrity and (2) maintaining landscape connectivity to facilitate transitions.</td>
</tr>
<tr>
<td>High</td>
<td>Areas with high vulnerability in the near future have high exposure but moderate adaptive capacity. This includes most of the park. Species turnover and restructuring of communities at MONO is likely.</td>
<td>Accommodate change and novel communities. Maintaining connected landscapes will support the persistence of diverse ecosystems, but actions should accommodate turnover of native species. Actions to maintain ecosystem functions and processes and limit biodiversity loss are favored (e.g., aggressive management of invasives, species translocations).</td>
</tr>
<tr>
<td>Very High</td>
<td>With high exposure and low adaptive capacity, areas with very high vulnerability may experience transformational changes likely to negatively impact overall biodiversity at MONO. This includes areas bordering major roads and other areas that are heavily impacted by development.</td>
<td>Accommodate significant change and reevaluate management goals. Actions can be targeted for maintaining ecosystem functions and limiting biodiversity loss, but efforts aimed at maintaining existing ecological communities may not achieve desired outcomes.</td>
</tr>
</tbody>
</table>
TO LEARN MORE

The information in this report is based on climate change scenarios from the Intergovernmental Panel on Climate Change (IPCC 2013), published climate datasets TopoWX (Oyler et al. 2014) and Prism (Daly et al. 2008), an analysis of terrestrial resilience for the eastern United States (Anderson et al. 2016), and analyses by NatureServe. To explore the data and learn more about our methods and the science behind climate change, please visit the links below.

2. More information about the data and methods used to characterize exposure will be made available in the final project report (Smyth et al, in prep.). Contact NatureServe to learn more.
3. More information about the data and methods used to characterize resilience can be found at: http://bit.ly/TNC_resilience
8. National Capital Region, Inventory & Monitoring Network: https://science.nature.nps.gov/im/units/ncrn/

GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Change</td>
<td>Changes in weather patterns over relatively long time-scales. In this study, climate is defined based on averages and variability in temperature and precipitation for about 30-year periods.</td>
</tr>
<tr>
<td>Ecological System</td>
<td>A standardized ecological unit representing plant communities influenced by similar physical environments and dynamic ecological processes (like fire or flooding). Altered and disturbed vegetation are excluded.</td>
</tr>
<tr>
<td>Ecoregion</td>
<td>Provinces of unique physiography, soils, climate, and vegetation, containing geographically distinct assemblages of natural communities and species.</td>
</tr>
<tr>
<td>Enduring Features</td>
<td>The physical settings defined by landform, bedrock, soil, and topography are largely unchanged through time and provide the physical underpinnings for ecological diversity.</td>
</tr>
<tr>
<td>Landscape Diversity</td>
<td>Complex topography and elevation gradients creating a range of local temperature and moisture conditions, called micro-climates, within a given area.</td>
</tr>
<tr>
<td>Local Connectedness</td>
<td>The degree to which land cover patterns (e.g., agriculture, forest, wetlands) provide natural connections, supporting important ecological processes and the movement and dispersal of species.</td>
</tr>
<tr>
<td>Natural Habitats</td>
<td>An ecological area supporting native species including forests, wetlands, and native grasslands, but excluding areas with extensive human influence (e.g., regularly mowed meadows).</td>
</tr>
<tr>
<td>Novel</td>
<td>In terms of climate change exposure, “novel” refers to conditions that are higher or lower than the historical range of temperature or precipitation conditions observed in the past.</td>
</tr>
<tr>
<td>Non-Climate Stressors</td>
<td>External factors, unrelated to climate change, putting species and ecosystems at risk, such as invasive species, land use changes, predation, and disease.</td>
</tr>
<tr>
<td>Refugia</td>
<td>An area where environmental conditions allow a species or community to persist, even as unfavorable changes cause it to become extinct from surrounding areas.</td>
</tr>
<tr>
<td>Typical</td>
<td>In terms of climate change exposure, “typical” refers to conditions that are close to those experienced in the baseline past.</td>
</tr>
<tr>
<td>Species Turnover</td>
<td>Change in the types of plants and animals present at a site as new species move in and others are lost.</td>
</tr>
</tbody>
</table>
REFERENCES

Full documentation of technical methods will be made available in a project report to be posted on the NPS IRMA portal pending project completion. For more information, contact Regan Smyth, NatureServe. Regan_Smyth@natureserve.org

Acknowledgments

Produced by NatureServe for the National Capital Region with the support of the National Park Service Climate Change Response Program. Special thanks for reviews by the National Park Service.